On compact locally conformal Kaehler manifolds with non-negative sectional curvature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examples of Riemannian Manifolds with Non-negative Sectional Curvature

Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...

متن کامل

Examples of Manifolds with Non-negative Sectional Curvature

Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...

متن کامل

Certain 4-manifolds with Non-negative Sectional Curvature

In this paper, we study certain compact 4-manifolds with non-negative sectional curvature K. If s is the scalar curvature and W+ is the self-dual part of Weyl tensor, then it will be shown that there is no metric g on S2 × S2 with both (i) K > 0 and (ii) 1 6 s−W+ ≥ 0. We also investigate other aspects of 4-manifolds with non-negative sectional curvature. One of our results implies a theorem of ...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Conformal Curvature Flows on Compact Manifold of Negative Yamabe Constant

Abstract. We study some conformal curvature flows related to prescribed curvature problems on a smooth compact Riemannian manifold (M, g0) with or without boundary, which is of negative (generalized) Yamabe constant, including scalar curvature flow and conformal mean curvature flow. Using such flows, we show that there exists a unique conformal metric of g0 such that its scalar curvature in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques

سال: 1980

ISSN: 0240-2963

DOI: 10.5802/afst.549